Taxpayer Classification Using K-Means Clustering to Support CRM Strategy Development: Case Study of Prabumulih City Samsat
Abstract
Effective management of taxpayer data is crucial for enhancing compliance and optimizing regional revenue. This study addresses the limited use of data-driven taxpayer segmentation in local Samsat institutions by applying K-Means Clustering to support targeted Customer Relationship Management (CRM) strategies. A dataset of 3,999 motor vehicle taxpayer records from September 2025 was processed through feature selection, scaling, and clustering. The analysis identified three distinct taxpayer groups based on payment timeliness, compliance consistency, and vehicle age. Cluster validity was confirmed using the Davies-Bouldin Index, yielding a value of -41.327 for k = 3, supported by ANOVA for statistical significance. The findings highlight how clustering can reveal taxpayer behavior patterns, guiding personalized services and compliance programs. This study's novelty lies in integrating clustering outcomes with practical CRM strategies for public agencies, offering a data-driven approach to improve taxpayer engagement and regional revenue. However, the study is limited by its focus on a single-period dataset and vehicle-related attributes.
Downloads
References
Samrah, "Implementasi Customer Relation Management (CRM) dalam memberikan pelayanan pada PT. Ranum Jaya Abadi Kabupaten Sidrap," Skripsi S.Sos, Prog. Studi Manajemen Dakwah, Fak. Ushuluddin Adab dan Dakwah, IAIN Parepare, Parepare, Indonesia, 2024.
Suharmanto, W. S. Utami, N. Pratiwi, dan M. Faisal, "Penerapan data mining menggunakan algoritma K-Means untuk clustering perokok usia lebih dari 15 tahun," Bulletin of Information Technology (BIT), vol. 4, no. 4, hal. 501-507, Des. 2023, doi: 10.47065/bit.v3i1.1067.
M. R. P. Pratama, M. I. Fieldi, M. S. Albani, M. A. Fachrozi, F. R. Aderiyana, K. D. Tania, dan A. Meiriza, "Perbandingan algoritma K-Means, K-Medoid, dan DBSCAN untuk clustering kualitas hidup Indonesia dalam perspektif Knowledge Management dan Data Discovery," JATI (Jurnal Mahasiswa Teknik Informatika), vol. 9, no. 4, hal. 5903-5910, Agu. 2025.
L. M. Rumaropen dan F. Mahananto, "Evaluation to implementation of Customer Relationship Management in scope of social media to increase interest customer," JIMU (Jurnal Ilmu Manajemen Universitas Bhayangkara Jakarta Raya), vol. 7, no. 1, hal. 37-47, Apr. 2025, doi: 10.31599/jmu.v5i1.
K. A. Yanuar dan H. Firmansyah, "Penerapan algoritma K-Means untuk clustering pemodelan pengetahuan pengguna menggunakan RapidMiner," Jurnal Komputer dan Informatika, vol. 3, no. 1, hal. 26-32, Mar. 2025.
D. Asti, M. S. Hasibuan, dan P. A. Siregar, "Penerapan algoritma K-Means untuk mengetahui tingkat kepatuhan wajib pajak kendaraan bermotor pada UPT Samsat Medan Selatan," Journal of Computer Science and Informatics Engineering (CoSIE), vol. 2, no. 4, hal. 190-198, Okt. 2023, doi: 10.31599/cosie.v2i4.
S. Wahyuni dan Sriani, "Penerapan algoritma K-Means untuk pengelompokan kepatuhan wajib pajak bumi dan bangunan di Kota Medan," CESS (Journal of Computer Engineering, System and Science), vol. 10, no. 1, hal. 325-334, Jan. 2025.
E. Wiradiansya, L. Elfianty, dan J. Fredricka, "Klasterisasi data kendaraan bermotor berdasarkan tunggakan pajak pada Kantor Samsat Kabupaten Bengkulu Selatan menggunakan metode K-Means clustering," JUKI: Jurnal Komputer dan Informatika, vol. 6, no. 2, hal. 164-173, Nov. 2024.
A. M. Nur, H. Bahtiar, dan M. A. Jannah, "Implementasi Algoritma K-Means Clustering Dalam Mengelompokkan Kepatuhan Wajib Pajak Bumi dan Bangunan Dengan Optimasi Elbow," Infotek: Jurnal Informatika dan Teknologi, vol. 8, no. 1, pp. 181-192, Januari 2025. DOI: 10.29408/jit.v8i1.27975.
C. Wulandari, Y. Ansori, dan K. F. H.H., "CRISP-DM Method On Indonesian Micro Industries (UMKM) Using K-Means Clustering Algorithm," MATICS: Jurnal Ilmu Komputer dan Teknologi Informasi, vol. 14, no. 2, pp. 35-40, September 2022.
R. H. Khan, D. F. Dofadar, dan Md. G. R. Alam, "Explainable Customer Segmentation Using K-means Clustering," in Proc. IEEE UEMCON, 2021. DOI: 10.1109/UEMCON53757.2021.9666609.
A. Ridwan, S. Setiadi, dan R. Maulana, "Optimization of Product Placement on E-commerce Platforms with K-Means Clustering to Improve User Experience," International Journal Software Engineering and Computer Science (IJSECS), vol. 4, no. 1, pp. 133-147, April 2024. DOI: 10.35870/ijsecs.v4i1.2328.
K. Gopalakrishnan, "Customer Segmentation Using K-Means Clustering for Targeted Marketing in Banking," International Journal of Artificial Intelligence & Machine Learning (IJAIML), vol. 3, no. 2, pp. 89-94, Juli-Desember 2024. DOI: 10.5281/zenodo.13627403.
F. R. Sucahyo, I. H. Santi, M. F. Rahmat, dan D. Fahrizal, "Comparing K-Means and K-medoids algorithms for clustering hamlet regions by tax liabilities in tax determination documents," International Journal of Science and Technology Research Archive, vol. 8, no. 1, pp. 69-78, Maret 2025. DOI: 10.53771/ijstra.2025.8.1.0023.
S. B. Syahputro, T. Chairunnisya, F. Apriyanti, J. Akbar, dan H. Marpaung, "Penerapan Customer Relationship Management (CRM) Upaya untuk Meningkatkan Loyalitas Pelanggan," Jurnal Ekonomi Manajemen Dan Bisnis, vol. 1, no. 2, pp. 147-151, November 2023.
S. Yadav, "Creating Customer Value: A Comprehensive Analysis of Contemporary CRM Strategies," International Journal of Research Publication and Reviews, vol. 5, no. 8, pp. 3525-3529, Agustus 2024.
S. Febriansyah dan S. Wahyuni, "Pengaruh Kebijakan e-Samsat, Tax Compliance Cost, Kualitas Pelayanan, dan Sanksi Perpajakan Terhadap Kepatuhan Wajib Pajak Dinas Samsat Kabupaten Pidie," Jurnal Akuntansi dan Keuangan (JAK), vol. 11, no. 2, pp. 101-110, 2023. DOI: 10.29103/jak.v11i2.8729.
N. Rizkiani, "The Effect of Taxpayer Awareness, Quality of Service, and Tax Penalties on Taxpayer Compliance at Samsat Bersama Office in the East Jakarta," International Journal of Multidisciplinary Research and Literature (IJOMRAL), vol. 1, no. 2, pp. 127-137, Maret 2022.
S. Prayitna dan B. Witono, "Pengaruh Sistem Samsat Drive Thru, Kesadaran Wajib Pajak, Sanksi Pajak, Pengetahuan Perpajakan Dan Akuntabilitas Pelayanan Publik Terhadap Kepatuhan Wajib Pajak Dalam Membayar Pajak Kendaraan Bermotor (Studi Pada Wajib pajak SAMSAT Kota Surakarta)," IKRAITH-EKONOMIKA, vol. 5, no. 1, pp. 134-141, Maret 2022.
A. E. P. Benggu dan T. W. Damayanti, "Pengaruh penerimaan penggunaan e-samsat terhadap kepatuhan perpajakan di Kota Kupang dengan technology acceptance model (TAM)," Entrepreneurship Bisnis Manajemen Akuntansi (E-BISMA), vol. 5, no. 2, pp. 239-256, 2022. DOI: 10.37631/ebisma.v5i2.1107.
A. Susilawati, A. S. M. Al Obaidi, A. Abduh, F. S. Irwansyah, dan A. B. D. Nandiyanto, "How to do research methodology: From Literature Review, Bibliometric, Step-by-step Research Stages, to Practical Examples in Science and Engineering Education," Indonesian Journal of Science & Technology, vol. 10, no. 1, pp. 1-40, April 2025. DOI: 10.17509/ijost.v10i1.78637.
H. Lakhlij, "Rethinking the Data Gathering Techniques of Qualitative Methods for Social Sciences Research," 2024.
G. Daruhadi dan P. Sopiati, "Research Data Collection," International Journal of Social Service and Research (IJSSR), vol. 4, no. 7, pp. 1-18, Juli 2024.
J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, 4th ed. Burlington, MA, USA: Morgan Kaufmann, 2022.
P. Tan, M. Steinbach, A. Karpatne, and V. Kumar, Introduction to Data Mining, 2nd ed. Harlow, UK: Pearson, 2022.
C. C. Aggarwal, Data Mining: The Textbook, 2nd ed. Cham, Switzerland: Springer, 2022, doi: 10.1007/978-3-319-14142-8.
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. New York, NY, USA: Springer, 2023, doi: 10.1007/978-0-387-84858-7.
G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning with Applications in Python. Cham, Switzerland: Springer, 2023, doi: 10.1007/978-3-031-38747-0.
S. Raschka and V. Mirjalili, Machine Learning with PyTorch and Scikit-Learn: Develop Machine Learning and Deep Learning Models with Python. Birmingham, UK: Packt Publishing, 2022.
A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 3rd ed. Sebastopol, CA, USA: O'Reilly Media, 2022.
Q.-V. Doan, T. Amagasa, T.-H. Pham, T. Sato, F. Chen, and H. Kusaka, "Structural k-means (S k-means) and clustering uncertainty evaluation framework (CUEF) for mining climate data," Geosci. Model Dev., vol. 16, no. 8, pp. 2215–2233, Apr. 2023, doi: 10.5194/gmd-16-2215-2023.
A. M. Ikotun, F. Habyarimana, and A. E. Ezugwu, "Cluster validity indices for automatic clustering: A comprehensive review," Heliyon, vol. 11, hlm. e41953, 2025. DOI: 10.1016/j.heliyon.2025.e41953.
Y. Sheng, R. Bond, R. Jaiswal, J. Dinsmore, and J. Doyle, "Augmenting K-Means Clustering With Qualitative Data to Discover the Engagement Patterns of Older Adults With Multimorbidity When Using Digital Health Technologies: Proof-of-Concept Trial," J. Med. Internet Res., vol. 26, hlm. e46287, Mar. 2024. DOI: 10.2196/46287.
Abstract views: 33 times
Download PDF: 19 times
Copyright (c) 2025 Journal of Information Systems and Informatics

This work is licensed under a Creative Commons Attribution 4.0 International License.
- I certify that I have read, understand and agreed to the Journal of Information Systems and Informatics (Journal-ISI) submission guidelines, policies and submission declaration. Submission already using the provided template.
- I certify that all authors have approved the publication of this and there is no conflict of interest.
- I confirm that the manuscript is the authors' original work and the manuscript has not received prior publication and is not under consideration for publication elsewhere and has not been previously published.
- I confirm that all authors listed on the title page have contributed significantly to the work, have read the manuscript, attest to the validity and legitimacy of the data and its interpretation, and agree to its submission.
- I confirm that the paper now submitted is not copied or plagiarized version of some other published work.
- I declare that I shall not submit the paper for publication in any other Journal or Magazine till the decision is made by journal editors.
- If the paper is finally accepted by the journal for publication, I confirm that I will either publish the paper immediately or withdraw it according to withdrawal policies
- I Agree that the paper published by this journal, I transfer copyright or assign exclusive rights to the publisher (including commercial rights)














