Sentiment Analysis of User Reviews for the PLN Mobile Application Using Naïve Bayes and Long Short-Term Memory

  • Jose Mario Ayomi Universitas Dr. Soetomo, Indonesia
  • Anik Vega Vitianingsih Universitas Dr. Soetomo, Indonesia
  • Yudi Kristyawan Universitas Dr. Soetomo, Indonesia
  • Anastasia Lidya Maukar President University, Indonesia
  • Tjatursari Widiartin Universitas Wijaya Kusuma, Indonesia
Keywords: Sentiment Analysis, Natural Language Processing, LSTM, PLN Mobile, Public Service Applications

Abstract

This study explores large-scale sentiment analysis of user reviews for the PLN Mobile application to better understand public perception and provide quantitative insights for improving digital electricity services in Indonesia. Addressing the lack of benchmarks for Indonesian public-service apps—where prior studies rely on smaller datasets and traditional machine learning—this research positions sentiment analysis as a tool for continuous user experience monitoring. A total of 50,000 Indonesian-language reviews from Google Play were collected and pre-processed using cleaning, case folding, tokenization, stopword removal, normalization, and stemming. Sentiments (positive, neutral, negative) were assigned using a domain-specific Indonesian sentiment lexicon, yielding approximately 40% positive, 35% neutral, and 25% negative labels. Two models were applied: Multinomial Naïve Bayes using TF-IDF features and a Long Short-Term Memory (LSTM) model with 100-dimensional word embeddings and a 128-unit LSTM layer. Naïve Bayes achieved 70.89% accuracy (F1-score: 0.6964), while LSTM outperformed it with 98.02% accuracy (F1-score: 0.9800). These results highlight the superiority of deep learning in sentiment monitoring and offer a scalable framework to help PLN and policymakers enhance digital public service delivery.

Downloads

Download data is not yet available.

References

A. Carla, H. Soetanto, and Y. Yuliazmi, “Implementasi text mining untuk analisis sentimen pada pengguna PLN Mobile menggunakan metode Naïve Bayes,” Bit (Fakultas Teknologi Informasi Universitas Budi Luhur), vol. 21, no. 1, pp. 72–77, 2024.

S. Syafrizal, M. Afdal, and R. Novita, “Analisis Sentimen Ulasan Aplikasi PLN Mobile Menggunakan Algoritma Naïve Bayes Classifier Dan K-Nearest Neighbor,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 1, pp. 10–19, Dec. 2023, doi: 10.57152/malcom.v4i1.983.

H. Faisal, A. Febriandirza, and F. N. Hasan, “Analisis sentimen terkait ulasan pada aplikasi PLN Mobile menggunakan metode Support Vector Machine,” Kesatria: Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen), vol. 5, no. 1, pp. 303–312, 2024.

A. A. Purnama and Y. R. Sipayung, “Sentiment Analysis of Public Service Using Naïve Bayes Classifier,” Journal of Information Systems and Informatics, vol. 7, no. 3, pp. 2439–2457, Sep. 2025, doi: 10.51519/journalisi.v7i3.1207.

K. Nurfebia and S. Sriani, “Sentiment Analysis of Skincare Products Using the Naive Bayes Method,” Journal of Information Systems and Informatics, vol. 6, no. 3, pp. 1663–1676, Sep. 2024, doi: 10.51519/journalisi.v6i3.817.

K. P. Gunasekaran, “Exploring sentiment analysis techniques in natural language processing: A comprehensive review,” arXiv preprint, arXiv:2305.14842, 2023.

Y. Asri, W. N. Suliyanti, D. Kuswardani, and M. Fajri, “Pelabelan Otomatis Lexicon Vader dan Klasifikasi Naive Bayes dalam menganalisis sentimen data ulasan PLN Mobile,” PETIR, vol. 15, no. 2, pp. 264–275, Nov. 2022, doi: 10.33322/petir.v15i2.1733.

Ihsan Zulfahmi, “Analisis Sentimen Aplikasi PLN Mobile Menggunakan Metode Decission Tree,” Jurnal Penelitian Rumpun Ilmu Teknik, vol. 3, no. 1, pp. 11–21, Dec. 2023, doi: 10.55606/juprit.v3i1.3096.

R. Y. Ahmed, N. F. Yuosif, S. A. Ahmed, and A.-B. A. Mohammed, “Comparison of RNN and LSTM Classifiers for Sentiment Analysis of Airline Tweets,” Journal of Information Systems and Informatics, vol. 7, no. 2, pp. 1893–1913, Jun. 2025, doi: 10.51519/journalisi.v7i2.1140.

A. Alfarel, H. Hasmawati, and B. Bunyamin, “Sentiment Analysis of Telkom University using the Long Short-Term Memory and Word2Vec Feature Expansion,” Jurnal Teknologi Informasi dan Pendidikan, vol. 17, no. 2, pp. 468–481, Dec. 2024, doi: 10.24036/jtip.v17i2.889.

A. Azrul, A. I. Purnamasari, and I. Ali, “Analisis sentimen pengguna Twitter terhadap perkembangan artificial intelligence dengan penerapan algoritma Long Short-Term Memory (LSTM),” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 1, pp. 413–421, 2024.

A. S. Widagdo, K. N. Qodri, F. E. N. Saputro, and N. A. R. Putri, “Analisis sentimen mobil listrik di Indonesia menggunakan Long-Short Term Memory (LSTM),” JURNAL FASILKOM, vol. 13, no. 3, pp. 416–423, 2023.

L. Y. Wibowo, N. Annisa, P. A. Khairunnisa, V. H. Pranatawijaya, and R. Priskila, “Implementasi Long Short-Term Memory dalam analisis sentimen pengguna aplikasi Twitter yang mengandung ujaran kebencian,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 3, pp. 3170–3174, 2024.

S. K. Wardani, Y. A. Sari, and I. Indriati, “Analisis sentimen menggunakan metode Naïve Bayes Classifier terhadap review produk perawatan kulit wajah menggunakan seleksi fitur N-gram dan Document Frequency Thresholding,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 12, pp. 5582–5590, 2021.

A. D. Pramesti, K. Umam, and M. R. Handayani, “Identification of buzzers in skincare reviews using a lexicon-based sentiment analysis method,” Journal of Applied Informatics and Computing, vol. 9, no. 5, pp. 2598–2606, 2025.

H. Firda, P. Putra, N. R. Oktadini, P. E. Sevtiyuni, K. O. Ilir, and S. Selatan, “Perbandingan pelabelan rating-based dan Inset Lexicon-based dalam analisis sentimen menggunakan SVM (studi kasus: ulasan aplikasi GoBiz di Google Play Store),” Jurnal Sistemasi, vol. 14, no. 2, pp. 516–528, 2025.

R. Ramadhan, Y. A. Sari, and P. P. Adikara, “Perbandingan pembobotan Term Frequency-Inverse Document Frequency dan Term Frequency-Relevance Frequency terhadap fitur N-Gram pada analisis sentimen,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 11, pp. 5075–5079, 2021.

P. R. Sari, D. R. Indah, E. Rasywir, and G. Athalina, “Comparison of Naive Bayes and SVM algorithms for sentiment analysis of PUBG Mobile on Google Play Store,” SISTEMASI, vol. 13, no. 6, pp. 2767–2779, 2024.

S. A. Z. Kusuma, D. E. Ratnawati, and N. Y. Setiawan, “Analisis sentimen pengguna sosial media Twitter/X terhadap acara Clash of Champions menggunakan metode Multinomial Naïve Bayes,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 9, no. 3, 2025.

M. N. Arifin, Amir Hamzah, Moh. A. Huda, and N. Hasanah, “Analysis of Google Play Store User Sentiment Towards Application X Using the SVM Algorithm,” Brilliance: Research of Artificial Intelligence, vol. 5, no. 1, pp. 249–258, Jun. 2025, doi: 10.47709/brilliance.v5i1.6024.

Z. Mahendra and A. Ridok, “Analisis sentimen opini masyarakat terhadap fenomena TikTokShop di Indonesia menggunakan metode K-Nearest Neighbor berbasis N-gram dengan seleksi fitur Information Gain,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 8, no. 5, 2024.

E. Eskiyaturrofikoh and R. R. Suryono, “Analisis Sentimen Aplikasi X Pada Google Play Store Menggunakan Algoritma Naïve Bayes Dan Support Vector Machine (SVM),” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 9, no. 3, pp. 1408–1419, Aug. 2024, doi: 10.29100/jipi.v9i3.5392.

Z. Rahman, P. Sakinah, Y. Hendra, B. Satria, F. Maulana, and A. Q. Ayun, “Sentiment analysis of Gojek app reviews on Google Play Store with natural language processing using Naive Bayes' algorithm,” Jurnal Multimedia dan Teknologi Informasi (Jatilima), vol. 6, no. 03, pp. 60–69, 2024, doi: 10.54209/jatilima.v6i03.1189.

S. D. Prasetyo, S. S. Hilabi, and F. Nurapriani, “Analisis sentimen relokasi Ibukota Nusantara menggunakan algoritma Naïve Bayes dan KNN,” Jurnal KomtekInfo, pp. 1–7, 2023, doi: 10.35134/komtekinfo.v10i1.330.

S. Wulandari, G. Atha, P. F. Alam, and M. Rendra, “Identification of Karleen Hijab Fashion SME Competitors Based on Sentiment Analysis Using Naïve Bayes Classifier Algorithm,” JTERA (Jurnal Teknologi Rekayasa), vol. 7, no. 2, p. 323, Dec. 2022, doi: 10.31544/jtera.v7.i2.2022.323-330.

R. Zahrani, N. Rosa Damayanti, E. Yulianingsih, and M. Ariandi, “Analisis Sentimen Opini Terhadap Novel Pada Website Goodreads Menggunakan Metode Naive Bayes Classifier,” Jurnal Teknologi Rekayasa), vol. 9, no. 2, p. 25, 2024, doi: 10.31544/jtera.v9.i1.2024.77-84.

Published
2025-12-13
Abstract views: 0 times
Download PDF: 0 times
How to Cite
Ayomi, J., Vitianingsih, A., Kristyawan, Y., Maukar, A., & Widiartin, T. (2025). Sentiment Analysis of User Reviews for the PLN Mobile Application Using Naïve Bayes and Long Short-Term Memory. Journal of Information Systems and Informatics, 7(4), 3849-3873. https://doi.org/10.63158/journalisi.v7i4.1342
Section
Articles