K-Means Clustering with Elbow Method for Stunting Risk Detection in Toddlers Using Anthropometric and Nutritional Data
Abstract
Stunting remains a critical public health challenge in Indonesia, primarily due to inadequate nutrition and recurrent infections in early childhood. This study aimed to identify patterns of stunting risk by integrating anthropometric and dietary data, specifically sugar consumption, using an unsupervised machine learning approach. A total of 20 toddlers aged 12-59 months from Purwokerto Selatan participated. Anthropometric data (age, weight, height) and dietary intake (sugar consumption, snack frequency) were collected via a caregiver questionnaire. K-Means clustering was applied, with the optimal number of clusters determined using the Elbow Method (K=2). Two clusters were identified: Cluster 0, with a lower risk of stunting, and Cluster 1, with a higher proportion of toddlers at risk. Cross-tabulation with stunting status validated this, showing that Cluster 1 contained more children with "Potential" stunting. Internal validation using the Silhouette score (0.252) and PCA visualization confirmed the clustering's robustness. This study demonstrates the potential of combining anthropometric and dietary data for stunting risk profiling, suggesting a complementary approach for growth monitoring programs and targeted interventions.
Downloads
References
N. I. Irsanti and I. Rodiyah, “Peran Posyandu Edelways Dalam Upaya Penanganan Stunting Di Desa Grogol Kecamatan Tulangan Kabupaten Sidoarjo,” J. Publicuho, vol. 8, no. 3, pp. 1943–1962, 2025.
Mivtahurrahimah, S. K. M., Epid, M., & Sevtiyani, I., "Unhealthy lifestyle and limited health monitoring as key risk factors for diabetes mellitus: Evidence from the 2023 Indonesian health survey," J. Epidemiol. Kesehat. Komunitas, vol. 10, no. 3, 2025.
Nugroho, M. R., Sasongko, R. N., & Kristiawan, M., "Faktor-faktor yang mempengaruhi kejadian stunting pada anak usia dini di Indonesia," J. Obsesi: J. Pendidik. Anak Usia Dini, vol. 5, no. 2, pp. 2269-2276, 2021.
K. BKPK, Buku Saku Hasil Studi Status Gizi Indonesia (SSGI) Tahun 2021. Kementrian Kesehatan Republik Indonesia, 2021.
A. Daracantika, Ainin, and Besral, “Systematic Literature Review: Pengaruh Negatif Stunting terhadap Perkembangan Kognitif Anak,” J. BIKFOKES, vol. 1, no. 2, 2021, doi: 10.7454/bikfokes.v1i2.1012.
Siregar, P. A. S., "Urgensi penerapan kebijakan cukai atas minuman berpemanis dalam kemasan (MBDK) di Indonesia," ETHNOGRAPHY: J. Design, Soc. Sci. Hum. Stud., vol. 2, no. 1, pp. 01-11, 2025.
D. Sulistiawati, “Agensi anak dalam pembentukan kebiasaan jajan balita dengan status gizi kurang di Rawa Bogo, Bekasi,” Antropol. Indones., vol. 44, no. 1, pp. 1–15, 2023, doi: 10.7454/jai.v44i1.1021.
I. Darmayanti, D. Intan, S. Saputra, and I. Saputri, “Clustering Sugar Content in Children ’ s Snacks for Diabetes Prevention Using Unsupervised Learning,” vol. 6, no. 4, pp. 2923–2936, 2024, doi: 10.51519/journalisi.v6i4.932.
S. L. Aila, F. F. Dieny, A. Candra, and H. S. Wijayanti, “Added Sugars Consumption Decreased Iron and Zinc Intake among Children Aged 24-59 Months in Central Java Konsumsi Gula Tambahan Menurunkan Asupan Zat Besi dan Seng pada Anak,” Amerta Nutr., vol. 7, no. 2, pp. 47–57, 2023, doi: 10.20473/amnt.v7i2SP.2023.47.
W. Jin, “Research on Machine Learning and Its Algorithms and Development,” J. Phys. Conf. Ser., 2020, doi: 10.1088/1742-6596/1544/1/012003.
Nurhayati, Busman, and R. P. Iswara, “Pengembangan Algoritma Unsupervised Learning Technique Pada Big Data Analysis Di Media Sosial Sebagai Media Promosi,” J. Tek. Inform., vol. 12, no. 1, pp. 79–96, 2019.
N. Chapwanya and K. N. Gorejena, “Hybrid Unsupervised Machine Learning for Insurance Fraud Detection : PCA-XGBoost-LOF and Isolation Forest,” J. Inf. Syst. Informatics, vol. 7, no. 1, pp. 941–959, 2025, doi: 10.51519/journalisi.v7i1.958.
R. S. Nurhalizah and R. Ardianto, “Analisis Supervised dan Unsupervised Learning pada Machine Learning : Systematic Literature Review,” J. Ilmu Komput. dan Inform., vol. 4, no. 1, pp. 61–72, 2024.
J. Yu et al., “Dietary Sugar Research in Preschoolers: Methodological, Genetic, and Cardiometabolic Considerations.,” Rev. Cardiovasc. Med., vol. 24, no. 9, p. 259, Sep. 2023, doi: 10.31083/j.rcm2409259.
Apriyani, P., Dikananda, A. R., & Ali, I., "Penerapan algoritma K-Means dalam klasterisasi kasus stunting balita desa Tegalwangi," Hello World J. Ilmu Komput., vol. 2, no. 1, pp. 20-33, 2023.
D. Cytry, S. Defit, and G. Nurcahyo, “Penerapan Metode K-Means dalam Klasterisasi Status Desa terhadap Keluarga Beresiko Stunting,” J. KomtekInfo, pp. 122–127, Sep. 2023, doi: 10.35134/komtekinfo.v10i3.423.
I. P. Sari, Al-Khowarizmi, O. K. Sulaiman, and D. Apdilah, “Implementation of Data Classification Using K-Means Algorithm in Clustering Stunting Cases,” J. Comput. Sci. Inf. Technol. Telecommun. Eng., vol. 4, no. 2, pp. 402–412, 2023, doi: 10.30596/jcositte.v4i2.15765.
M. A. Aziz, L. Amalia, and I. Darmayanti, “Comparison of K-Medoids Algorithm with K- Means on Number of Student Dropped Out,” 1st Int. Conf. Smart Technol. Appl. Informatics, Eng., pp. 53–58, 2022.
C. Shi, B. Wei, S. Wei, W. Wang, H. Liu, and J. Liu, “A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm,” EURASIP J. Wirel. Commun. Netw., 2021, doi: 10.1186/s13638-021-01910-w.
I. Darmayanti, D. Mustofa, N. Hidayati, and I. Saputri, “K - Means and Fuzzy C - Means Cluster Food Nutrients for Innovative Diabetes Risk Assessment,” vol. 13, pp. 2175–2182, 2024.
M. Shutaywi and N. N. Kachouie, “Silhouette analysis for performance evaluation in machine learning with applications to clustering,” Entropy, vol. 23, no. 6, pp. 1–17, 2021, doi: 10.3390/e23060759.
K. R. Shahapure and C. Nicholas, “Cluster Quality Analysis Using Silhouette Score,” in 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), 2020, pp. 747–748. doi: 10.1109/DSAA49011.2020.00096.
D. Wulandari, T. Prahasto, and V. Gunawan, “Penerapan Principal Component Analysis untuk Mereduksi Dimensi Data Penerapan Teknologi Informasi dan Komunikasi untuk Pendidikan di Sekolah,” vol. 02, pp. 91–96, 2016, doi: 10.21456/vol6iss2pp91-96.
Abstract views: 19 times
Download PDF: 11 times
Copyright (c) 2025 Journal of Information Systems and Informatics

This work is licensed under a Creative Commons Attribution 4.0 International License.
- I certify that I have read, understand and agreed to the Journal of Information Systems and Informatics (Journal-ISI) submission guidelines, policies and submission declaration. Submission already using the provided template.
- I certify that all authors have approved the publication of this and there is no conflict of interest.
- I confirm that the manuscript is the authors' original work and the manuscript has not received prior publication and is not under consideration for publication elsewhere and has not been previously published.
- I confirm that all authors listed on the title page have contributed significantly to the work, have read the manuscript, attest to the validity and legitimacy of the data and its interpretation, and agree to its submission.
- I confirm that the paper now submitted is not copied or plagiarized version of some other published work.
- I declare that I shall not submit the paper for publication in any other Journal or Magazine till the decision is made by journal editors.
- If the paper is finally accepted by the journal for publication, I confirm that I will either publish the paper immediately or withdraw it according to withdrawal policies
- I Agree that the paper published by this journal, I transfer copyright or assign exclusive rights to the publisher (including commercial rights)














