Child Nutrition Prediction for Stunting Prevention Using K-Nearest Neighbor (K-NN) Algorithm

  • Chandra Kirana Institut Sains dan Bisnis Atma Luhur, Indonesia
  • Delpiah Wahyuningsih Institut Sains dan Bisnis Atma Luhur, Indonesia
  • Louis Michael Institut Sains dan Bisnis Atma Luhur, Indonesia
Keywords: K-Nearest Neighbor, child nutrition prediction, stunting prevention, classification, artificial intelligence

Abstract

Stunting is a significant public health issue in Indonesia, affecting both children's physical growth and cognitive development. This study aims to develop a child nutritional status prediction application using the K-Nearest Neighbor (K-NN) algorithm as an early detection tool for stunting prevention. The model classifies nutritional status into five categories: good nutrition, poor nutrition, undernutrition, overnutrition, and obesity, using anthropometric data such as age, weight, height, and gender. The dataset comprises 49,766 samples of children aged 0–5 years from the Bangka Belitung Islands Provincial Health Office. The data processing included normalization, feature selection, and k-value testing to optimize model performance. Evaluation results showed that K-NN with k = 2 achieved 92% accuracy, with the best precision and recall in the good nutrition category (0.94 and 0.99). However, performance in minority categories like malnutrition remains low due to data imbalance. The weighted averages for precision, recall, and F1-score were 0.90, 0.92, and 0.90, respectively. This research's novelty lies in integrating the K-NN model into a mobile application, enabling real-time nutritional status assessment for health workers, improving fieldwork efficiency, and facilitating early detection and monitoring.

Downloads

Download data is not yet available.

References

B. Soetono And A. S. Barokah, “Trends In Stunting Prevalence Reduction : An Examination Of Data Toward Achieving The 2024 Target In Indonesia,” Soc. Perspect. J., Vol. 3, No. 1, Pp. 51–68, 2024, Doi: 10.53947/Tspj.V3i1.795.

L. K. B. Prasetya, “Tantangan Menuju Prevalensi Stunting 14%: Mengapa Penurunan Prevalensi Stunting Dalam 2 Tahun Terakhir (Tahun 2021 Dan 2022) Sangat Kecil Di Indonesia?,” J. Kel. Berencana, No. 8.5.2017, Pp. 1–7, 2024.

O. Martony, “Stunting Di Indonesia: Tantangan Dan Solusi Di Era Modern,” J. Telenursing, Vol. 2, No. 4, Pp. 31–41, 2023, doi: 10.31539/Joting.V5i2.6930.

H. Rahman, M. Rahmah, And N. Saribulan, “Penanganan Strategi Stunting Di Indonesia: Analisis Bibliometri Dan Analisis Konten,” J. Ilmu Pemerintah. Suara Khatulistiwa, Vol. Viii, No. 01, Pp. 44–59, 2023.

M. Ula, A. F. Ulva, I. Saputra, Mauliza, And I. Maulana, “Implementation Of Machine Learning Using The K-Nearest Neighbor Classification Model In Diagnosing Malnutrition In Children,” Multica Sci. Technol. J., Vol. 2, No. 1, Pp. 94–99, 2022, doi: 10.47002/Mst.V2i1.326.

S. N. Azizah And Z. Fatah, “Implementasi Metode K-Nearest Neighbor ( K-Nn ) Pada Klasifikasi Stunting Balita,” Gudang J. Multidisiplin Ilmu, Vol. 2, No. 10, Pp. 282–288, 2024.

Alfiyyah, A. Abdillah, A. Thobirin, And D. E. Wijayanti, “Jurnal Ilmiah Matematika Klasifikasi Penentuan Status Gizi Balita Dengan Metode Naive Bayes,” J. Ilm. Mat., Vol. 11, No. 1, Pp. 62–78, 2024.

O. Saeful Bachri And R. M. Herdian Bhakti, “Penentuan Status Stunting Pada Anak Dengan Menggunakan Algoritma Knn,” J. Ilm. Intech Inf. Technol. J. Umus, Vol. 3, No. 02, Pp. 130–137, 2021, doi: 10.46772/Intech.V3i02.533.

Kemal Musthafa Rajabi, W. Witanti, And Rezki Yuniarti, “Penerapan Algoritma K-Nearest Neighbor (Knn) Dengan Fitur Relief-F Dalam Penentuan Status Stunting,” Innov. J. Soc. Sci. Res., Vol. 3, Pp. 3555–3568, 2023.

L. Swastina, B. Rahmatullah, A. Saad, And H. Khan, “A Systematic Review On Research Trends, Datasets, Algorithms, And Frameworks Of Children’s Nutritional Status Prediction,” Iaes Int. J. Artif. Intell., Vol. 13, No. 2, Pp. 1866–1875, 2024, doi: 10.11591/Ijai.V13.I2.Pp1868-1877.

M. Yanto, F. Hadi, And S. Arlis, “Determination Of Children’s Nutritional Status With Machine Learning Classification Analysis Approach,” Indones. J. Electr. Eng. Comput. Sci., Vol. 33, No. 1, Pp. 303–313, 2024, doi: 10.11591/Ijeecs.V33.I1.Pp303-313.

N. Purwati And G. B. Sulistyo, “Stunting Early Warning Application Using Knn Machine Learning Method,” J. Ris. Inform., Vol. 5, No. 3, Pp. 373–378, 2023, doi: 10.34288/Jri.V5i3.550.

D. H. Ramadhani, Jumadi, And G. Sandi, “Implementasi Algoritma K-Nearest Neighbors ( Knn ) Untuk Prediksi Gizi Buruk,” Smatika Stiki Inform. J., Vol. 14, No. 2, Pp. 326–336, 2024.

R. R. R. Arisandi, B. Warsito, And A. R. Hakim, “Aplikasi Naive Bayes Classifier (Nbc) Pada Klasifikasi Status Gizi Balita Stunting Dengan Pengujian K-Fold Cross Validation,” J. Gaussian, Vol. 11, No. 1, Pp. 130–139, 2022.

A. P. T. Djoru And S. Yulianto, “Pendekatan Machine Learning Untuk Deteksi Stunting Pada Balita Menggunakan K-Nearest Neighbors,” J. Jtik ( J. Teknol. Inf. Dan Komun. ), Vol. 9, No. June, Pp. 664–672, 2025, doi: 10. 35870/ J T Ik.V9i2. 3436.

Y. B. Blikon, A. G. Sooai, And P. A. N. Samane, “Perbandinga Kinerja Pengklasifikasi Citra Buah Kakao Sakit Dan Sehat Menggunakan Support Vector Machine (Svm) Dan K-Nearest Neighbors (Knn),” Simetris J. Tek. Mesin, Elektro Dan Ilmu Komput., Vol. 14, No. 1, Pp. 1–8, 2023, doi: 10.24176/Simet.V14i1.9012.

H. A. Hasan And Mohammad J. Mohammad, “Classification Of Iraqi Children According To Nutritional Status Using Fuzzy Decision Tree,” J. Al-Rafidain Univ. Coll. Sci., Vol. 56, No. 1, Pp. 468–480, 2025, doi: 10.55562/Jrucs.V56i1.42.

Y. N. Aprilia, D. A. Sani, And N. M. Anggadimas, “Klasifikasi Status Penderita Gizi Stunting Pada Balita Menggunakan Metode Random Forest (Studi Kasus Di Kelurahan Petamanan Kota Pasuruan),” Integer J. Inf. Technol., Vol. 9, No. 2, Pp. 143–154, 2024.

T. Sugihartono, B. Wijaya, Marini, A. F. Alkayes, And H. A. Anugrah, “Optimizing Stunting Detection Through Smote And Machine Learning: A Comparative Study Of Xgboost, Random Forest, Svm, And K-Nn,” J. Appl. Data Sci., Vol. 6, No. 1, Pp. 667–682, 2025, doi: 10.47738/Jads.V6i1.494.

T. Mladenova And I. Valova, “Classification With K-Nearest Neighbors Algorithm: Comparative Analysis Between The Manual And Automatic Methods For K-Selection,” Int. J. Adv. Comput. Sci. Appl., Vol. 14, No. 4, Pp. 396–404, 2023, doi: 10.14569/Ijacsa.2023.0140444.

J. Zhang, Z. Bian, And S. Wang, “Bayes-Decisive Linear Knn With Adaptive Nearest Neighbors,” Int. J. Intell. Syst., Vol. 2024, 2024, Doi: 10.1155/2024/6664942.

M. A. Kholik, C. H. Pratomo, And S. Gustina, “Application Of The K-Nearest Neighbor ( Knn ) Algorithm For Stunting Diagnosis In Infants Aged 1-12 Months,” J. Inform. Univ. Pamulang, Vol. 9, No. 2, 2024.

A. Junaidi And R. Meiyanti, “Klasifikasi Status Anak Stunting Menggunakan Metode K- Nearest Neighbor Pendahuluan Stunting Merupakan Kondisi Gagal Tumbuh Pada Anak Balita Akibat Kekurangan Gizi Kronis Yang Berlangsung Dalam Jangka Waktu Lama , Terutama Pada 1 . 000 Hari Pertama Kehidu,” J. Teknol. Dan Sist. Inf. Univrab, Vol. 10, No. 2, Pp. 1435–1445, 2025, doi: 10.36341/Rabit.V10i2.6536.

K. M. Kahloot And P. Ekler, “Algorithmic Splitting: A Method For Dataset Preparation,” Ieee Access, Vol. 9, Pp. 125229–125237, 2021, doi: 10.1109/Access.2021.3110745.

A. Atique And A. Hashmi, “Enhancing Knn Classification With Crow Search Optimization For Dynamic Text-Based Data Categorization,” Int. J. Adv. Comput. Res., Vol. 14, No. 67, 2024, doi: 10.19101/Ijacr.2024.1466009.

Published
2025-12-10
Abstract views: 24 times
Download PDF: 15 times
How to Cite
Kirana, C., Wahyuningsih, D., & Michael, L. (2025). Child Nutrition Prediction for Stunting Prevention Using K-Nearest Neighbor (K-NN) Algorithm. Journal of Information Systems and Informatics, 7(4), 3571-3586. https://doi.org/10.63158/journalisi.v7i4.1322
Section
Articles