Multivariate LSTM for Drug Purchase Prediction in Pharmaceutical Management
Abstract
This study aims to develop a structured approach to predict the number of hospital drug purchases using deep learning techniques. The Multivariate Long Short-Term Memory (LSTM) model is designed to capture temporal and contextual patterns including transaction time, polyclinic type, and drug type to improve the efficiency of pharmaceutical management. The model was tested using outpatient transaction data at RSIA Fatimah Probolinggo hospital in East Java, Indonesia, through three configurations (A, B, and C) to determine the optimal parameters. The best model, the Model B1, produces a Mean Absolute Error (MAE) value of 10.239, Mean Absolute Percentage Error (MAPE) of 1.976%, and the Coefficient of Determination (R²) of 0.199, which indicates a high degree of accuracy. The results of the study prove that multivariate LSTM is able to model complex intervariable dependencies and provide superior results than conventional forecasting methods. In practical terms, this model can be used as a decision-making tool for hospital management in planning drug procurement, optimizing inventory, and preventing shortages and overstocks. The application of this model contributes to data-driven pharmaceutical supply chain planning in smart hospital management systems.
Downloads
References
F. Mbonyinshuti, J. Nkurunziza, J. Niyobuhungiro, dan E. Kayitare, “Health supply chain forecasting: a comparison of ARIMA and LSTM time series models for demand prediction of medicines,” Acta Logist., vol. 11, no. 2, hal. 269–280, 2024, doi: 10.22306/AL.V11I2.510.
M. A. Yusiana, G. Rossa, dan O. Aprilia, “Literatur Review: Analisis Manajemen Obat Di Rumah Sakit Pemerintah Dan Swasta,” JARSI J. Adm. RS Indones., vol. 1, no. 2, hal. 81–88, 2022.
R. Rathipriya, A. A. Abdul Rahman, S. Dhamodharavadhani, A. Meero, dan G. Yoganandan, “Demand forecasting model for time-series pharmaceutical data using shallow and deep neural network model,” Neural Comput. Appl., vol. 35, no. 2, hal. 1945–1957, 2023, doi: 10.1007/s00521-022-07889-9.
R. Chandra, A. Jain, dan D. S. Chauhan, “Deep learning via LSTM models for COVID-19 infection forecasting in India,” PLoS One, vol. 17, no. 1 January, hal. 1–28, 2022, doi: 10.1371/journal.pone.0262708.
E. Yang, H. Zhang, X. Guo, Z. Zang, Z. Liu, dan Y. Liu, “A multivariate multi-step LSTM forecasting model for tuberculosis incidence with model explanation in Liaoning Province, China,” BMC Infect. Dis., vol. 22, no. 1, hal. 1–13, 2022, doi: 10.1186/s12879-022-07462-8.
M. I. Anshory, Y. Priyandari, dan Y. Yuniaristanto, “Peramalan Penjualan Sediaan Farmasi Menggunakan Long Short-term Memory: Studi Kasus pada Apotik Suganda,” Performa Media Ilm. Tek. Ind., vol. 19, no. 2, Okt 2020, doi: 10.20961/performa.19.2.45962.
A. S. Bayangkari Karno, “Analisis Data Time Series Menggunakan LSTM (Long Short Term Memory) Dan ARIMA (Autocorrelation Integrated Moving Average) Dalam Bahasa Python.,” Ultim. InfoSys J. Ilmu Sist. Inf., vol. 11, no. 1, hal. 1–7, Apr 2020, doi: 10.31937/si.v9i1.1223.
A. S. Wahyudi, K. Khairil, dan R. Zulfiandry, “Penerapan Metode Regresi Linear Berganda Dalam Prediksi Jumlah Pemakaian Obat Pada Rumah Sakit Rafflesia Kota Bengkulu,” J. MEDIA INFOTAMA, vol. 20, no. 2, hal. 525–533, Okt 2024.
J. Devaraj et al., “Forecasting of COVID-19 cases using deep learning models: Is it reliable and practically significant?,” Results Phys., vol. 21, no. December 2020, hal. 103817, 2021, doi: 10.1016/j.rinp.2021.103817.
F. Yanti, B. N. Sari, and S. Defiyanti, "Implementasi algoritma LSTM pada peramalan stok obat," JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 4, pp. 6082-6089, 2024.
G. R. Husaini, S. Suakanto, dan H. Fakhrurroja, “Design of Drug Sales Prediction System Using The Hybrid Demand Forecast Model,” in ICoCSETI 2025 - International Conference on Computer Sciences, Engineering, and Technology Innovation, Proceeding, 2025, hal. 107–112. doi: 10.1109/ICoCSETI63724.2025.11020313.
K. Sofi, A. S. Sunge, S. R. Riady, dan A. Z. Kamalia, “Perbandingan Algoritma Linear Regression, Lstm, dan Gru Dalam Memprediksi Harga Saham Dengan Model Time Series,” SEMINASTIKA, vol. 3, no. 1, hal. 39–46, Apr 2021, doi: 10.47002/seminastika.v3i1.275.
Z. Tang, Z. Cui, H. Wang, P. Liu, X. Xu, dan K. Yang, “A 4-DOF Exosuit Using a Hybrid EEG-Based Control Approach for Upper-Limb Rehabilitation,” IEEE J. Transl. Eng. Heal. Med., vol. 12, no. April, hal. 622–634, 2024, doi: 10.1109/JTEHM.2024.3454077.
F. Fauzi, S. Aulia, A. R. Syaifullah, dan T. W. Utami, “Peramalan Harga Emas Menggunakan Pendekatan Long-Short Term Memory (LSTM),” J. Edukasi dan Penelit. Inform., vol. 10, no. 2, hal. 252, Apr 2024, doi: 10.26418/jp.v10i2.78332.
J. Cahyani, S. Mujahidin, dan T. P. Fiqar, “Implementasi Metode Long Short Term Memory (LSTM) untuk Memprediksi Harga Bahan Pokok Nasional,” J. Sist. dan Teknol. Inf., vol. 11, no. 2, hal. 346, Jul 2023, doi: 10.26418/justin.v11i2.57395.
D. Xu, Q. Zhang, Y. Ding, dan D. Zhang, “Application of a hybrid ARIMA-LSTM model based on the SPEI for drought forecasting,” Environ. Sci. Pollut. Res., vol. 29, no. 3, hal. 4128–4144, 2022, doi: 10.1007/s11356-021-15325-z.
Q. Ma, Z. Chen, S. Tian, dan W. W. Y. Ng, “Difference-Guided Representation Learning Network for Multivariate Time-Series Classification,” IEEE Trans. Cybern., vol. 52, no. 6, hal. 4717–4727, 2022, doi: 10.1109/TCYB.2020.3034755.
E. D. Hartono, A. Lastriyanto, E. Zubaidah, dan Y. Hendrawan, “Prediction Analysis of Heat Penetration in Ohmic Heating using Multivariate Long Short-Term Memory Networks,” Eng. Technol. Appl. Sci. Res., vol. 15, no. 3, hal. 22527–22537, 2025, doi: 10.48084/etasr.10063.
T. Limouni, R. Yaagoubi, K. Bouziane, K. Guissi, dan E. H. Baali, “Univariate and Multivariate LSTM Models for One Step and Multistep PV Power Forecasting,” Int. J. Renew. Energy Dev., vol. 11, no. 3, hal. 815–828, 2022, doi: 10.14710/ijred.2022.43953.
J. Nathaniel, "Penerapan nonpooling CNN-LSTM untuk prediksi pemakaian obat rumah sakit," Ph.D. dissertation, Institut Teknologi Harapan Bangsa, 2022.
A. S. Alhanaf, M. Farsadi, dan H. H. Balik, “Fault Detection and Classification in Ring Power System With DG Penetration Using Hybrid CNN-LSTM,” IEEE Access, vol. 12, no. April, hal. 59953–59975, 2024, doi: 10.1109/ACCESS.2024.3394166.
S. Mohsen, A. Elkaseer, dan S. G. Scholz, “Industry 4.0-Oriented Deep Learning Models for Human Activity Recognition,” IEEE Access, vol. 9, no. November, hal. 150508–150521, 2021, doi: 10.1109/ACCESS.2021.3125733.
T. Limouni, R. Yaagoubi, K. Bouziane, K. Guissi, dan E. H. Baali, “Univariate and Multivariate LSTM Models for One Step and Multistep PV Power Forecasting,” Int. J. Renew. Energy Dev., vol. 11, no. 3, hal. 815–828, Apr 2022, doi: 10.14710/ijred.2022.43953.
M. L. Ashari dan M. Sadikin, “Prediksi Data Transaksi Penjualan Time Series Menggunakan Regresi Lstm,” J. Nas. Pendidik. Tek. Inform., vol. 9, no. 1, hal. 1, Apr 2020, doi: 10.23887/janapati.v9i1.19140.
D. Eka P, “Perancangan Sistem Informasi Pendaftaran Pasien Rawat Jalan Menggunakan Microsoft Visual Studio 2010 di Puskesmas Cijagra Lama Kota Bandung,” vol. 2, no. 4, hal. 1147–1152, 2021.
Y. Li, Y. Yao, J. Lin, dan N. Wang, “A Deep Learning Algorithm Based on CNN-LSTM Framework for Predicting Cancer Drug Sales Volume,” arXiv Prepr. arXiv2506.21927, 2025.
W. Zhang, M. Xu, Y. Feng, Z. Mao, dan Z. Yan, “The Effect of Procrastination on Physical Exercise among College Students—The Chain Effect of Exercise Commitment and Action Control,” Int. J. Ment. Health Promot., vol. 26, no. 8, hal. 611–622, 2024, doi: 10.32604/ijmhp.2024.052730.
Abstract views: 53 times
Download PDF: 30 times
Copyright (c) 2025 Journal of Information Systems and Informatics

This work is licensed under a Creative Commons Attribution 4.0 International License.
- I certify that I have read, understand and agreed to the Journal of Information Systems and Informatics (Journal-ISI) submission guidelines, policies and submission declaration. Submission already using the provided template.
- I certify that all authors have approved the publication of this and there is no conflict of interest.
- I confirm that the manuscript is the authors' original work and the manuscript has not received prior publication and is not under consideration for publication elsewhere and has not been previously published.
- I confirm that all authors listed on the title page have contributed significantly to the work, have read the manuscript, attest to the validity and legitimacy of the data and its interpretation, and agree to its submission.
- I confirm that the paper now submitted is not copied or plagiarized version of some other published work.
- I declare that I shall not submit the paper for publication in any other Journal or Magazine till the decision is made by journal editors.
- If the paper is finally accepted by the journal for publication, I confirm that I will either publish the paper immediately or withdraw it according to withdrawal policies
- I Agree that the paper published by this journal, I transfer copyright or assign exclusive rights to the publisher (including commercial rights)














