Sentiment Classification of TikTok Reviews on Almaz Fried Chicken Using IndoBERT and Random Oversampling

  • Imam Syahputra Zaki Sriwijaya University, Indonesia
  • Rizka Dhini Kurnia Sriwijaya University, Indonesia
  • Allsela Meiriza Sriwijaya University, Indonesia
Keywords: Sentiment Analysis, IndoBERT, Random Oversampling, Tiktok, Public Opinion, Almaz Fried Chicken

Abstract

The socio-political context surrounding the Indonesian Ulema Council's Fatwa No. 83 of 2023, which catalyzed a significant consumer shift, necessitates an accurate measure of public sentiment toward alternative local brands like Almaz Fried Chicken. Analyzing real-time consumer discourse on the challenging TikTok platform, the study utilized a final dataset of 4,374 unique comments to overcome the inherent problem of dataset imbalance and linguistic informality. The core method involved a seven-stage quantitative approach: data collection, preprocessing, sentiment labeling, data splitting (70:15:15), Random Oversampling (ROS), IndoBERT fine-tuning, and evaluation. This pipeline fine-tuned IndoBERT, a Transformer-based model, integrated with ROS applied exclusively to the training data. Evaluation demonstrated that ROS significantly reduced model bias and enhanced performance: Overall Accuracy increased by 2.0% (from 91% to 93%), and the Macro F1-Score improved by 3.4% (from 0.87 to 0.90). Most critically, the F1-Score for the minority Negative sentiment class surged from 0.78 to 0.84, confirming ROS's effectiveness in accurately detecting critical feedback. These findings provide timely, data-driven insights into brand perception amidst the boycott campaign and establish a robust, reliable IndoBERT-ROS methodology for advanced sentiment monitoring in dynamic social media environments.

Downloads

Download data is not yet available.

References

I. Akbar, M. Rahmani Abduh, and F. Ilmi, "Aksi Boikot Produk Pro-Israel: Tepat Atau Salah Sasaran? (Refleksi Fatwa Mui Nomor: 83 Tahun 2023 Tentang Hukum Dukungan Terhadap Perjuangan Palestina)," Indonesian J. Islamic Jurisprudence, Econ. and Legal Theory, vol. 3, pp. 1409–1435, May 2025, doi: 10.62976/ijijel.v3i2.1129.

S. Fatimah, N. Asnawi, and U. Khasanah, "Business Ethics Values In Mui Fatwa No. 83 Of 2023," in Proc. Int. Conf. Islamic Econ. ad Bus. (ICONIES), vol. 10, pp. 47–58, 2024. Accessed: Nov. 18, 2025.

J. A. Sosiologi, A. Mustofa, and F. Alfikri, "MUI Fatwa Authority: Social Movement To Boycott Israeli Products Through Instagram Social Media," Jurnal Analisa Sosiologi, vol. 14, no. 2, pp. 268–291, 2025, doi: 10.20961/jas.v14i2.99200.

F. Agil, A. Munawar, M. Azmi, and M. Rohmanan, "Diskursus Fatwa MUI No. 83 Tahun 2023 Tentang Dukungan Terhadap Palestina dan Seruan Boikot Produk Pro-Israel," Jurnal Bimas Islam, vol. 17, no. 2, 2025, doi: 10.37302/jbi.v17i2.1402.

R. R. Datau, D. Ichsanuddin Nur, F. Juliputra, A. Eka, P. Haryanto, and I. N. Fauzi, "Analisis Sentimen Tiktok Terhadap Coffee Shop X Dan Implikasinya Terhadap Strategi Pemasaran Digital," JAMBURA, vol. 8, no. 1, May 2025.

M. Labib Rifa’i A) and A. Abdurrahman, "Pengaruh Karakteristik Influencer Marketing terhadap Niat Beli Online Konsumen pada Platform Tiktok," Selekta Manajemen: Jurnal Mahasiswa Bisnis & Manajemen, vol. 03, no. 01, pp. 121–131, 2024.

A. R. P. Dewi, S. Riyadi, C. Darmajati, N. A. M. Isa, and A. D. Andriyani, "Sentiment Analysis of Pro-Israel Product Boycott Action Using IndoBERT Method on Unbalanced Data," JUITA: Jurnal Informatika, vol. 13, no. 2, pp. 187–197, Aug. 2025, doi: 10.30595/juita.v13i2.25976.

Z. A. Sriyanti, D. S. Y. Kartika, and A. R. E. Najaf, "Implementasi Model Bert Pada Analisis Sentimen Pengguna Twitter Terhadap Aksi Boikot Produk Israel," Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 3, Aug. 2024, doi: 10.23960/jitet.v12i3.4743.

M. S. A. Shaumi and Paradise, "Implementasi Metode Naïve Bayes Classifier Terhadap Analisis Sentimen Boikot Produk Terafiliasi Israel Pada Media Sosial ‘X,’" e-Proceeding of Engineering, vol. 12, no. 4, pp. 6786–6792, Aug. 2025.

S. S. Sabrina, D. F. Shiddieq, and F. F. Roji, "Comparative Analysis of SVM and BERT for Sentiment and Sarcasm Detection in the Boycott of Israeli Products on Platform X," Sinkron, vol. 9, no. 2, pp. 872–883, May 2025, doi: 10.33395/sinkron.v9i2.14723.

D. F. M. Dina, T. Haryanti, and M. A. Haq, "Analisis Sentimen Terhadap Komentar Pada Media Sosial Tiktok Yang Berpotensi Menyebabkan Depresi Menggunakan Metode Naive Bayes," Computing Insight: Journal of Computer Science, vol. 7, no. 1, pp. 1–9, Jun. 2025, doi: 10.30651/comp_insight.v7i1.26327.

S. Diantika, "Penerapan Teknik Random Oversampling Untuk Mengatasi Imbalance Class Dalam Klasifikasi Website Phishing Menggunakan Algoritma Lightgbm," JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 1, pp. 19–25, Jan. 2023, doi: 10.36040/jati.v7i1.6006.

F. Y. A’la, "Optimasi Klasifikasi Sentimen Ulasan Game Berbahasa Indonesia: IndoBERT dan SMOTE untuk Menangani Ketidakseimbangan Kelas," Edumatic: Jurnal Pendidikan Informatika, vol. 9, no. 1, pp. 256–265, Apr. 2025, doi: 10.29408/edumatic.v9i1.29666.

I. Muhandhis and A. S. Ritonga, "Public Sentiment Analysis on TikTok about Tapera Policy using Random Forest Classifier," Sistemasi: Jurnal Sistem Informasi, vol. 14, pp. 354–365, 2025.

M. A. H. A. Asmawi, P. Isawasan, L. Shanmugam, K. A. Salleh, and K. S. Savita, "Exploring Sentiment Trends in TikTok Comments Using GPT for," e-Academia Journal of UiTM Cawangan Terengganu, vol. 14, no. 1, pp. 57–72, Jun. 2025, doi: 10.24191/eaj.v14i1.5623.

Z. Cheng and Y. Li, "Like, Comment, and Share on TikTok: Exploring the Effect of Sentiment and Second-Person View on the User Engagement with TikTok News Videos," Soc. Sci. Comput. Rev., vol. 42, no. 1, pp. 201–223, Feb. 2024, doi: 10.1177/08944393231178603.

D. M. Pius, M. Simanjuntak, and C. Umri, "Implementasi Algoritma Klasifikasi untuk Analisis Sentimen Media Sosial Tiktok Tahun 2025," Jurnal Teknik Informatika dan Teknologi Informasi, vol. 5, pp. 488–504, Apr. 2025, doi: 10.55606/jutiti.v5i1.5644.

M. F. N. Fathono, E. Y. Puspaningrum, and A. N. Sihananto, "Perbandingan Performa Labeling Lexicon InSet dan VADER pada Analisa Sentimen Rohingya di Aplikasi X dengan SVM," Jurnal Informatika dan Sains Teknologi, vol. 1, no. 3, pp. 62–76, Jul. 2024, doi: 10.62951/modem.v1i3.112.

R. Firdaus, I. Asror, and A. Herdiani, "Lexicon-Based Sentiment Analysis of Indonesian Language Student Feedback Evaluation," Ind. J. Computing, vol. 6, no. 1, pp. 1–12, Apr. 2021, doi: 10.34818/indojc.2021.6.1.408.

J. Kasundra, C. Schulz, M. Mirsafian, and S. Skylaki, "A Framework for Monitoring and Retraining Language Models in Real-World Applications," arXiv preprint arXiv:2311.09930, Nov. 2023. [Online]. Available: http://arxiv.org/abs/2311.09930

R. Savitri, F. Rizki, and A. Sobri, "Implementation of BERT in Sentiment Analysis of National Digital Samsat (SIGNAL) User Reviews Based on Machine Learning," MATICS: J. Ilmu Komputer dan Teknol. Informasi, vol. 17, no. 2, pp. 67–75, Sep. 2025, doi: 10.18860/mat.v17i2.32059.

M. Hayaty, S. Muthmainah, and S. M. Ghufran, "Random and Synthetic Over-Sampling Approach to Resolve Data Imbalance in Classification," Int. J. Artif. Intell. Res., vol. 4, no. 2, p. 86, Jan. 2021, doi: 10.29099/ijair.v4i2.152.

H. Jayadianti, W. Kaswidjanti, A. T. Utomo, S. Saifullah, F. A. Dwiyanto, and R. Drezewski, "Sentiment analysis of Indonesian reviews using fine-tuning IndoBERT and R-CNN," ILKOM Jurnal Ilmiah, vol. 14, no. 3, pp. 348–354, Dec. 2022, doi: 10.33096/ilkom.v14i3.1505.348-354.

F. Destryanto, P. Rizqiyah, and P. Sokibi, "Sentiment Analysis of Public Response to the Free Nutritious Meal Program on Instagram Using IndoBERT," J. Inf. Syst. Eng. Bus. Intell., vol. 5, no. 1, pp. 2808–4519, Feb. 2025.

R. I. Perwira, V. A. Permadi, D. I. Purnamasari, and R. P. Agusdin, "Domain-Specific Fine-Tuning of IndoBERT for Aspect-Based Sentiment Analysis in Indonesian Travel User-Generated Content," J. Inf. Syst. Eng. Bus. Intell., vol. 11, no. 1, pp. 30–40, Feb. 2025, doi: 10.20473/jisebi.11.1.30-40.

Published
2025-12-09
Abstract views: 48 times
Download PDF: 30 times
How to Cite
Zaki, I., Kurnia, R., & Meiriza, A. (2025). Sentiment Classification of TikTok Reviews on Almaz Fried Chicken Using IndoBERT and Random Oversampling. Journal of Information Systems and Informatics, 7(4), 3309-3329. https://doi.org/10.63158/journalisi.v7i4.1310
Section
Articles