Predicting Bitcoin and Ethereum Prices Using the Long Short- Term Memory (LSTM) Model

  • M Aswadi UIN Raden Fatah, Indonesia
  • Usman Ependi Bina Darma University, Indonesia
Keywords: Cryptocurrency, Bitcoin, Ethereum, LSTM, Price Prediction

Abstract

Cryptocurrency is a highly volatile digital asset, necessitating accurate and adaptive forecasting methods. This study implements a Long Short-Term Memory (LSTM) model to predict the daily closing prices of two leading cryptocurrencies Bitcoin (BTC) and Ethereum (ETH) using historical data from Yahoo Finance and Binance. To enhance data richness and model robustness, datasets from both sources were vertically merged. The methodological framework included data preprocessing, Min–Max normalization, formation of 24-day sliding input windows, and training across three data split ratios (70:30, 80:20, and 90:10). Model performance was evaluated using the Root Mean Squared Error (RMSE). Results indicate that the LSTM model achieved high prediction accuracy, with the lowest RMSE values of 0.0137 for BTC and 0.0152 for ETH using the combined dataset with a 90:10 split. Beyond modeling, a web-based application was developed using Streamlit, enabling users to perform real-time predictions and export results. This study contributes to the field of cryptocurrency forecasting by demonstrating that multi-source data integration significantly improves predictive accuracy and model generalization. The proposed framework offers both theoretical insights and practical tools for researchers and investors in financial technology.

Downloads

Download data is not yet available.

References

M. F. Rizkilloh and S. Widiyanesti, “Prediksi Harga Cryptocurrency Menggunakan Algoritma Long Short-Term Memory (LSTM),” J. RESTI (Rekayasa Sist. dan Teknol. Inf.), vol. 6, no. 1, pp. 25–31, Feb. 2022, doi: 10.29207/resti.v6i1.3630.

A. Sujjada and F. Sembiring, “Prediksi Harga Bitcoin Menggunakan Algoritma Long Short-Term Memory,” J. Inovtek Polbeng, vol. 9, pp. 450–459, 2024.

A. Wicaksono, C. E. Violita, and E. R. Kamila, “Bitcoin Sebagai Instrumen Investasi yang Menguntungkan,” Greenomika, vol. 4, no. 1, pp. 44–49, 2022.

M. W. P. Aldi, J. Jondri, and A. Aditsania, “Analisis dan Implementasi Long Short-Term Memory Neural Network untuk Prediksi Harga Bitcoin,” eProceedings Eng., vol. 5, no. 2, 2018.

T. B. Sianturi, I. Cholissodin, and N. Yudistira, “Penerapan Algoritma Long Short-Term Memory (LSTM) Berbasis Multi Fungsi Aktivasi Terbobot dalam Prediksi Harga Ethereum,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 3, pp. 1101–1107, 2023.

M. Nirraca and E. Hartati, “Prediksi Harga Bitcoin Menggunakan Metode Long Short-Term Memory,” J. Digit. Teknol. Inf., vol. 7, no. 1, pp. 55–65, 2024, doi: 10.32502/digital.v7i1.7974.

I. Indriyanti, N. Ichsan, H. Fatah, T. Wahyuni, and E. Ermawati, “Implementasi Orange Data Mining untuk Prediksi Harga Bitcoin,” J. Responsif: Riset Sains dan Informatika, vol. 4, no. 2, pp. 118–125, 2022.

R. Faizal, B. D. Setiawan, and I. Cholissodin, “Prediksi Nilai Cryptocurrency Bitcoin Menggunakan Algoritme Extreme Learning Machine (ELM),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 5, pp. 4226–4233, 2019.

M. A. Maliki, I. Cholissodin, and N. Yudistira, “Prediksi Pergerakan Harga Cryptocurrency Bitcoin terhadap Mata Uang Rupiah Menggunakan Algoritme LSTM,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 7, pp. 3259–3268, 2022.

A. Santoso, A. I. Purnamasari, and I. Ali, “Prediksi Harga Beras Menggunakan Metode Recurrent Neural Network dan Long Short-Term Memory,” Prosisko J. Pengemb. Ris. dan Obs. Sist. Komput., vol. 11, no. 1, pp. 128–136, 2024.

A. Nilsen, “Perbandingan Model RNN, Model LSTM, dan Model GRU dalam Memprediksi Harga Saham-Saham LQ45,” J. Statistika dan Aplikasinya, vol. 6, no. 1, 2022.

S. A. Tussifah, “Analisis Perbandingan Kinerja Model ARIMA, LSTM dan GRU pada Stock Price Forecasting,” B.Sc. thesis, Fak. Sains dan Teknol., Univ. Islam Negeri Syarif Hidayatullah, Jakarta, Indonesia, 2023.

F. Ferdiansyah, S. H. Othman, R. Z. R. M. Radzi, D. Stiawan, Y. Sazaki, and U. Ependi, “A LSTM-Method for Bitcoin Price Prediction: A Case Study Yahoo Finance Stock Market,” in Proc. 2019 Int. Conf. Electr. Eng. Comput. Sci. (ICECOS), Oct. 2019, pp. 206–210, IEEE.

M. Nirraca and E. Hartati, “Prediksi Harga Bitcoin Menggunakan Metode Long Short-Term Memory,” J. Digit. Teknol. Inf., vol. 7, no. 1, pp. 55–65, 2024.

B. Na and G. Fox, “Object Classifications by Image Super-Resolution Preprocessing for Convolutional Neural Networks,” Adv. Sci. Technol. Eng. Syst. J., vol. 5, pp. 476–483, Feb. 2020, doi: 10.25046/aj050261.

T. Nurholipah, R. Kurniawan, and Y. A. Wijaya, “Evaluasi Performa Model Regresi Linear dengan RMSE pada Jumlah Penumpang Bus Transjakarta,” JIKA (J. Inform.), vol. 8, no. 2, pp. 180–186, 2024.

R. Sari, K. Kusrini, T. Hidayat, and T. Orphanoudakis, “Improved LSTM Method of Predicting Cryptocurrency Price Using Short-Term Data,” IJCCS (Indones. J. Comput. Cybern. Syst.), vol. 17, no. 1, pp. 33–42, Feb. 2023, doi: 10.22146/ijccs.80776.

K. Kashif and R. Ślepaczuk, “LSTM-ARIMA as a Hybrid Approach in Algorithmic Investment Strategies,” Knowl.-Based Syst., vol. 113563, 2025.

S. Zahara and M. B. Ilmiddafiq, “Prediksi Indeks Harga Konsumen Menggunakan Metode Long Short-Term Memory (LSTM) Berbasis Cloud Computing,” Masa Berlaku Mulai, vol. 1, no. 3, pp. 357–363, 2017.

R. Cahuantzi, X. Chen, and S. Güttel, “A Comparison of LSTM and GRU Networks for Learning Symbolic Sequences,” in Proc. Sci. Inf. Conf., Cham, Switzerland: Springer Nature, Jul. 2023, pp. 771–785, doi: 10.1007/978-3-031-37963-5_53.

A. Baradja and S. Sukoco, “Pemanfaatan Recurrent Neural Network (RNN) untuk Meningkatkan Akurasi Prediksi Mata Uang pada Forex Trading,” J. Softw. Eng. Ampera, vol. 4, no. 2, pp. 119–131, 2023.

M. Iqbal, M. Iqbal, F. Jaskani, K. Iqbal, and A. Hassan, “Time-Series Prediction of Cryptocurrency Market Using Machine Learning Techniques,” EAI Endorsed Trans. Creative Technol., vol. 8, no. 28, p. 170286, Aug. 2021, doi: 10.4108/eai.7-7-2021.170286.

R. Akbar, R. Santoso, and B. Warsito, “Prediksi Tingkat Temperatur Kota Semarang Menggunakan Metode Long Short-Term Memory (LSTM),” J. Gaussian, vol. 11, no. 4, pp. 572–579, 2023.

R. Pascanu, T. Mikolov, and Y. Bengio, “On the Difficulty of Training Recurrent Neural Networks,” in Proc. Int. Conf. Mach. Learn. (ICML), 2013, pp. 1310–1318, PMLR.

P. Le and W. Zuidema, “Quantifying the Vanishing Gradient and Long-Distance Dependency Problem in Recursive Neural Networks and Recursive LSTMs,” arXiv preprint arXiv:1603.00423, 2016.

Published
2025-09-30
Abstract views: 422 times
Download PDF: 125 times
How to Cite
Aswadi, M., & Ependi, U. (2025). Predicting Bitcoin and Ethereum Prices Using the Long Short- Term Memory (LSTM) Model. Journal of Information Systems and Informatics, 7(3), 3046-3061. https://doi.org/10.51519/journalisi.v7i3.1228
Section
Articles