Predicting Bitcoin and Ethereum Prices Using the Long Short- Term Memory (LSTM) Model
Abstract
Cryptocurrency is a highly volatile digital asset, necessitating accurate and adaptive forecasting methods. This study implements a Long Short-Term Memory (LSTM) model to predict the daily closing prices of two leading cryptocurrencies Bitcoin (BTC) and Ethereum (ETH) using historical data from Yahoo Finance and Binance. To enhance data richness and model robustness, datasets from both sources were vertically merged. The methodological framework included data preprocessing, Min–Max normalization, formation of 24-day sliding input windows, and training across three data split ratios (70:30, 80:20, and 90:10). Model performance was evaluated using the Root Mean Squared Error (RMSE). Results indicate that the LSTM model achieved high prediction accuracy, with the lowest RMSE values of 0.0137 for BTC and 0.0152 for ETH using the combined dataset with a 90:10 split. Beyond modeling, a web-based application was developed using Streamlit, enabling users to perform real-time predictions and export results. This study contributes to the field of cryptocurrency forecasting by demonstrating that multi-source data integration significantly improves predictive accuracy and model generalization. The proposed framework offers both theoretical insights and practical tools for researchers and investors in financial technology.
Downloads
References
M. F. Rizkilloh and S. Widiyanesti, “Prediksi Harga Cryptocurrency Menggunakan Algoritma Long Short-Term Memory (LSTM),” J. RESTI (Rekayasa Sist. dan Teknol. Inf.), vol. 6, no. 1, pp. 25–31, Feb. 2022, doi: 10.29207/resti.v6i1.3630.
A. Sujjada and F. Sembiring, “Prediksi Harga Bitcoin Menggunakan Algoritma Long Short-Term Memory,” J. Inovtek Polbeng, vol. 9, pp. 450–459, 2024.
A. Wicaksono, C. E. Violita, and E. R. Kamila, “Bitcoin Sebagai Instrumen Investasi yang Menguntungkan,” Greenomika, vol. 4, no. 1, pp. 44–49, 2022.
M. W. P. Aldi, J. Jondri, and A. Aditsania, “Analisis dan Implementasi Long Short-Term Memory Neural Network untuk Prediksi Harga Bitcoin,” eProceedings Eng., vol. 5, no. 2, 2018.
T. B. Sianturi, I. Cholissodin, and N. Yudistira, “Penerapan Algoritma Long Short-Term Memory (LSTM) Berbasis Multi Fungsi Aktivasi Terbobot dalam Prediksi Harga Ethereum,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 3, pp. 1101–1107, 2023.
M. Nirraca and E. Hartati, “Prediksi Harga Bitcoin Menggunakan Metode Long Short-Term Memory,” J. Digit. Teknol. Inf., vol. 7, no. 1, pp. 55–65, 2024, doi: 10.32502/digital.v7i1.7974.
I. Indriyanti, N. Ichsan, H. Fatah, T. Wahyuni, and E. Ermawati, “Implementasi Orange Data Mining untuk Prediksi Harga Bitcoin,” J. Responsif: Riset Sains dan Informatika, vol. 4, no. 2, pp. 118–125, 2022.
R. Faizal, B. D. Setiawan, and I. Cholissodin, “Prediksi Nilai Cryptocurrency Bitcoin Menggunakan Algoritme Extreme Learning Machine (ELM),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 5, pp. 4226–4233, 2019.
M. A. Maliki, I. Cholissodin, and N. Yudistira, “Prediksi Pergerakan Harga Cryptocurrency Bitcoin terhadap Mata Uang Rupiah Menggunakan Algoritme LSTM,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 7, pp. 3259–3268, 2022.
A. Santoso, A. I. Purnamasari, and I. Ali, “Prediksi Harga Beras Menggunakan Metode Recurrent Neural Network dan Long Short-Term Memory,” Prosisko J. Pengemb. Ris. dan Obs. Sist. Komput., vol. 11, no. 1, pp. 128–136, 2024.
A. Nilsen, “Perbandingan Model RNN, Model LSTM, dan Model GRU dalam Memprediksi Harga Saham-Saham LQ45,” J. Statistika dan Aplikasinya, vol. 6, no. 1, 2022.
S. A. Tussifah, “Analisis Perbandingan Kinerja Model ARIMA, LSTM dan GRU pada Stock Price Forecasting,” B.Sc. thesis, Fak. Sains dan Teknol., Univ. Islam Negeri Syarif Hidayatullah, Jakarta, Indonesia, 2023.
F. Ferdiansyah, S. H. Othman, R. Z. R. M. Radzi, D. Stiawan, Y. Sazaki, and U. Ependi, “A LSTM-Method for Bitcoin Price Prediction: A Case Study Yahoo Finance Stock Market,” in Proc. 2019 Int. Conf. Electr. Eng. Comput. Sci. (ICECOS), Oct. 2019, pp. 206–210, IEEE.
M. Nirraca and E. Hartati, “Prediksi Harga Bitcoin Menggunakan Metode Long Short-Term Memory,” J. Digit. Teknol. Inf., vol. 7, no. 1, pp. 55–65, 2024.
B. Na and G. Fox, “Object Classifications by Image Super-Resolution Preprocessing for Convolutional Neural Networks,” Adv. Sci. Technol. Eng. Syst. J., vol. 5, pp. 476–483, Feb. 2020, doi: 10.25046/aj050261.
T. Nurholipah, R. Kurniawan, and Y. A. Wijaya, “Evaluasi Performa Model Regresi Linear dengan RMSE pada Jumlah Penumpang Bus Transjakarta,” JIKA (J. Inform.), vol. 8, no. 2, pp. 180–186, 2024.
R. Sari, K. Kusrini, T. Hidayat, and T. Orphanoudakis, “Improved LSTM Method of Predicting Cryptocurrency Price Using Short-Term Data,” IJCCS (Indones. J. Comput. Cybern. Syst.), vol. 17, no. 1, pp. 33–42, Feb. 2023, doi: 10.22146/ijccs.80776.
K. Kashif and R. Ślepaczuk, “LSTM-ARIMA as a Hybrid Approach in Algorithmic Investment Strategies,” Knowl.-Based Syst., vol. 113563, 2025.
S. Zahara and M. B. Ilmiddafiq, “Prediksi Indeks Harga Konsumen Menggunakan Metode Long Short-Term Memory (LSTM) Berbasis Cloud Computing,” Masa Berlaku Mulai, vol. 1, no. 3, pp. 357–363, 2017.
R. Cahuantzi, X. Chen, and S. Güttel, “A Comparison of LSTM and GRU Networks for Learning Symbolic Sequences,” in Proc. Sci. Inf. Conf., Cham, Switzerland: Springer Nature, Jul. 2023, pp. 771–785, doi: 10.1007/978-3-031-37963-5_53.
A. Baradja and S. Sukoco, “Pemanfaatan Recurrent Neural Network (RNN) untuk Meningkatkan Akurasi Prediksi Mata Uang pada Forex Trading,” J. Softw. Eng. Ampera, vol. 4, no. 2, pp. 119–131, 2023.
M. Iqbal, M. Iqbal, F. Jaskani, K. Iqbal, and A. Hassan, “Time-Series Prediction of Cryptocurrency Market Using Machine Learning Techniques,” EAI Endorsed Trans. Creative Technol., vol. 8, no. 28, p. 170286, Aug. 2021, doi: 10.4108/eai.7-7-2021.170286.
R. Akbar, R. Santoso, and B. Warsito, “Prediksi Tingkat Temperatur Kota Semarang Menggunakan Metode Long Short-Term Memory (LSTM),” J. Gaussian, vol. 11, no. 4, pp. 572–579, 2023.
R. Pascanu, T. Mikolov, and Y. Bengio, “On the Difficulty of Training Recurrent Neural Networks,” in Proc. Int. Conf. Mach. Learn. (ICML), 2013, pp. 1310–1318, PMLR.
P. Le and W. Zuidema, “Quantifying the Vanishing Gradient and Long-Distance Dependency Problem in Recursive Neural Networks and Recursive LSTMs,” arXiv preprint arXiv:1603.00423, 2016.
Abstract views: 422 times
Download PDF: 125 times
Copyright (c) 2025 Journal of Information Systems and Informatics

This work is licensed under a Creative Commons Attribution 4.0 International License.
- I certify that I have read, understand and agreed to the Journal of Information Systems and Informatics (Journal-ISI) submission guidelines, policies and submission declaration. Submission already using the provided template.
- I certify that all authors have approved the publication of this and there is no conflict of interest.
- I confirm that the manuscript is the authors' original work and the manuscript has not received prior publication and is not under consideration for publication elsewhere and has not been previously published.
- I confirm that all authors listed on the title page have contributed significantly to the work, have read the manuscript, attest to the validity and legitimacy of the data and its interpretation, and agree to its submission.
- I confirm that the paper now submitted is not copied or plagiarized version of some other published work.
- I declare that I shall not submit the paper for publication in any other Journal or Magazine till the decision is made by journal editors.
- If the paper is finally accepted by the journal for publication, I confirm that I will either publish the paper immediately or withdraw it according to withdrawal policies
- I Agree that the paper published by this journal, I transfer copyright or assign exclusive rights to the publisher (including commercial rights)














